Charging and Discharging Capacitors

Charging capacitors:

When a capacitor is charged through a resistor from a DC power supply, the charge on the capacitor and the voltage across the capacitor will increase with time. The voltage V, as a function of time is given by:

$$V = V_0 (1 - e^{-t/RC})$$

Where: V_0 is the charging voltage.

After a time t = RC (one time constant), the voltage across the capacitor has increased to 63% its maximum value ($V = 0.63 V_0$ at t=RC).

Take the reading of the electrometer (voltage across the capacitor) at each second and tabulate your results as follows:

Time (s)	Voltage (V)
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	
110	
120	

Time (s)	Voltage (V)
130	
140	
150	
160	
170	
180	
190	
200	
210	
220	
230	
240	
250	

 $V_0 =$

0.63 V₀ =

 $\tau_{theoretical} = RC =$

Plot a graph of the voltage V (y axis) vs. Time t (x axis) and from the graph find the value of the time constant corresponding to $0.63 V_0$

$\tau_{experimental} =$

Discharging capacitors:

When a capacitor is discharged through a resistor, the charge on the capacitor and the voltage across the capacitor will decrease with time. The voltage V, as a function of time is given by:

$$V = V_0 e^{-t/RC}$$

Where: *V*₀ is the charging voltage.

After a time t = RC (one time constant), the voltage across the capacitor has decreased to **37%** its maximum value ($V = 0.37 V_0$ at t=RC).

Take the reading of the electrometer (voltage across the capacitor) at each second and tabulate your results as follows:

Time (s)	Voltage (V)
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	
110	
120	

Time (s)	Voltage (V)
130	
140	
150	
160	
1701	
180	
190	
200	
210	
220	
230	
240	
250	

 $V_0 =$

 $0.37 V_0 =$

 $au_{theoretical} = RC =$

Plot a graph of the voltage **V** (y axis) vs. Time t (x axis) and from the graph find the value of the time constant corresponding to $0.63 V_0$

 $\tau_{experimental} =$